Personal tools
You are here: Home Blogs Weiyi Documents Research Paper Summary

Research Paper Summary

J Am Chem Soc. 2006 Oct 4;128(39):12766-77.

Thermodynamic basis for promiscuity and selectivity in protein-protein interactions: PDZ domains, a case study.

Basdevant N, Weinstein H, Ceruso M.

Department of Chemistry, CUNY College of Staten Island, 2800 Victory Boulevard, Staten Island, NY 10314, USA.

Like other protein-protein interaction domains, PDZ domains are involved in many key cellular processes. These processes often require that specific multiprotein complexes be assembled, a task that PDZ domains accomplish by binding to specific peptide motifs in target proteins. However, a growing number of experimental studies show that PDZ domains (like other protein-protein interaction domains) can engage in a variety of interactions and bind distinct peptide motifs. Such promiscuity in ligand recognition raises intriguing questions about the molecular and thermodynamic mechanisms that can sustain it. To identify possible sources of promiscuity and selectivity underlying PDZ domain interactions, we performed molecular dynamics simulations of 20 to 25 ns on a set of 12 different PDZ domain complexes (for the proteins PSD-95, Syntenin, Erbin, GRIP, NHERF, Inad, Dishevelled, and Shank). The electrostatic, nonpolar, and configurational entropy binding contributions were evaluated using the MM/PBSA method combined with a quasi-harmonic analysis. The results revealed that PDZ domain interactions are characterized by overwhelmingly favorable nonpolar contributions and almost negligible electrostatic components, a mix that may readily sustain promiscuity. In addition, despite the structural similarity in fold and in recognition modes, the entropic and other dynamical aspects of binding were remarkably variable not only across PDZ domains but also for the same PDZ domain bound to distinct ligands. This variability suggests that entropic and dynamical components can play a role in determining selectivity either of PDZ domain interactions with peptide ligands or of PDZ domain complexes with downstream effectors.

PMID: 17002371 [PubMed - indexed for MEDLINE]


Biochemistry. 2003 Mar 18;42(10):2797-805.

Role of electrostatic interactions in PDZ domain ligand recognition.

Harris BZ, Lau FW, Fujii N, Guy RK, Lim WA.

Program in Biological Sciences, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143, USA.

PDZ domains are protein-protein interaction modules that normally recognize short C-terminal peptides. The apparent requirement for a ligand with a free terminal carboxylate group has led to the proposal that electrostatic interactions with the terminus play a significant role in recognition. However, this model has been called into question by the more recent finding that PDZ domains can recognize some internal peptide motifs that occur within a specific secondary structure context. Although these motifs bind at the same interface, they lack a terminal charge. Here we have investigated the role of electrostatics in PDZ-mediated recognition in the mouse alpha1-syntrophin PDZ domain by examining the salt dependence of binding to both terminal and internal ligands and the effects of mutating a conserved basic residue previously proposed to play a role in electrostatic recognition. These studies indicate that direct electrostatic interactions with the peptide terminus do not play a significant energetic role in binding. Additional chemical modification studies of the peptide terminus support a model in which steric and hydrogen bonding complementarity play a primary role in recognition specificity. Peptides with a free carboxy terminus, or presented within a specific structural context, can satisfy these requirements.

PMID: 12627945 [PubMed - indexed for MEDLINE]


J Biol Chem. 2005 Oct 14;280(41):34805-12. Epub 2005 Jul 27.

The kinetics of PDZ domain-ligand interactions and implications for the binding mechanism.

Gianni S, Engström A, Larsson M, Calosci N, Malatesta F, Eklund L, Ngang CC, Travaglini-Allocatelli C, Jemth P.

Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden.

PDZ domains are protein adapter modules present in a few hundred human proteins. They play important roles in scaffolding and signal transduction. PDZ domains usually bind to the C termini of their target proteins. To assess the binding mechanism of this interaction we have performed the first in-solution kinetic study for PDZ domains and peptides corresponding to target ligands. Both PDZ3 from postsynaptic density protein 95 and PDZ2 from protein tyrosine phosphatase L1 bind their respective target peptides through an apparent A + B --> A.B mechanism without rate-limiting conformational changes. But a mutant with a fluorescent probe (Trp) outside of the binding pocket suggests that slight changes in the structure take place upon binding in protein tyrosine phosphatase-L1 PDZ2. For PDZ3 from postsynaptic density protein 95 the pH dependence of the binding reaction is consistent with a one-step mechanism with one titratable group. The salt dependence of the interaction shows that the formation of electrostatic interactions is rate-limiting for the association reaction but not for dissociation of the complex.


Nat Struct Biol. 2002 Aug;9(8):621-7.

Computer-aided design of a PDZ domain to recognize new target sequences.

Reina J, Lacroix E, Hobson SD, Fernandez-Ballester G, Rybin V, Schwab MS, Serrano L, Gonzalez C.

Cell Biology and Biophysics Program, EMBL, 69117 Heidelberg, Germany.

PDZ domains are small globular domains that recognize the last 4-7 amino acids at the C-terminus of target proteins. The specificity of the PDZ-ligand recognition is due to side chain-side chain interactions, as well as the positioning of an alpha-helix involved in ligand binding. We have used computer-aided protein design to produce mutant versions of a Class I PDZ domain that bind to novel Class I and Class II target sequences both in vitro and in vivo, thus providing an alternative to primary antibodies in western blotting, affinity chromatography and pull-down experiments. Our results suggest that by combining different backbone templates with computer-aided protein design, PDZ domains could be engineered to specifically recognize a large number of proteins.


J Biol Chem. 2006 Aug 4;281(31):22312-20. Epub 2006 May 31.

Comparative structural analysis of the Erbin PDZ domain and the first PDZ domain of ZO-1. Insights into determinants of PDZ domain specificity.

Appleton BA, Zhang Y, Wu P, Yin JP, Hunziker W, Skelton NJ, Sidhu SS, Wiesmann C.

Department of Protein Engineering, Genentech, Inc., South San Francisco, California 94080, USA.

We report a structural comparison of the first PDZ domain of ZO-1 (ZO1-PDZ1) and the PDZ domain of Erbin (Erbin-PDZ). Although the binding profile of Erbin-PDZ is extremely specific ([D/E][T/S]WV(COOH)), that of ZO1-PDZ1 is similar ([R/K/S/T][T/S][W/Y][V/I/L](COOH)) but broadened by increased promiscuity for three of the last four ligand residues. Consequently, the biological function of ZO-1 is also broadened, as it interacts with both tight and adherens junction proteins, whereas Erbin is restricted to adherens junctions. Structural analyses reveal that the differences in specificity can be accounted for by two key differences in primary sequence. A reduction in the size of the hydrophobic residue at the base of the site(0) pocket enables ZO1-PDZ1 to accommodate larger C-terminal residues. A single additional difference alters the specificity of both site(-1) and site(-3). In ZO1-PDZ1, an Asp residue makes favorable interactions with both Tyr(-1) and Lys/Arg(-3). In contrast, Erbin-PDZ contains an Arg at the equivalent position, and this side chain cannot accommodate either Tyr(-1) or Lys/Arg(-3) but, instead, interacts favorably with Glu/Asp(-3). We propose a model for ligand recognition that accounts for interactions extending across the entire binding site but that highlights several key specificity switches within the PDZ domain fold.


PLoS One. 2007 Sep 26;2(9):e953.

The PDZ domain as a complex adaptive system.

Kurakin A, Swistowski A, Wu SC, Bredesen DE.

The Buck Institute for Age Research, Novato, California, USA.

Specific protein associations define the wiring of protein interaction networks and thus control the organization and functioning of the cell as a whole. Peptide recognition by PDZ and other protein interaction domains represents one of the best-studied classes of specific protein associations. However, a mechanistic understanding of the relationship between selectivity and promiscuity commonly observed in the interactions mediated by peptide recognition modules as well as its functional meaning remain elusive. To address these questions in a comprehensive manner, two large populations of artificial and natural peptide ligands of six archetypal PDZ domains from the synaptic proteins PSD95 and SAP97 were generated by target-assisted iterative screening (TAIS) of combinatorial peptide libraries and by synthesis of proteomic fragments, correspondingly. A comparative statistical analysis of affinity-ranked artificial and natural ligands yielded a comprehensive picture of known and novel PDZ ligand specificity determinants, revealing a hitherto unappreciated combination of specificity and adaptive plasticity inherent to PDZ domain recognition. We propose a reconceptualization of the PDZ domain in terms of a complex adaptive system representing a flexible compromise between the rigid order of exquisite specificity and the chaos of unselective promiscuity, which has evolved to mediate two mutually contradictory properties required of such higher order sub-cellular organizations as synapses, cell junctions, and others--organizational structure and organizational plasticity/adaptability. The generalization of this reconceptualization in regard to other protein interaction modules and specific protein associations is consistent with the image of the cell as a complex adaptive macromolecular system as opposed to clockwork.


<!-- @page { margin: 0.79in } P { margin-bottom: 0.08in } -->

J Am Chem Soc. 2005 Oct 12;127(40):14072-9.

A flexible docking procedure for the exploration of peptide binding selectivity to known structures and homology models of PDZ domains.

Niv MY, Weinstein H.

Department of Physiology and Biophysics, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021, USA.

PDZ domains are important scaffolding modules that typically bind to the C-termini of their interaction partners. Several structures of such complexes have been solved, revealing a conserved binding site in the PDZ domain and an extended conformation of the bound peptide. A compendium of information regarding PDZ complexes demonstrates that dissimilar C-terminal peptides bind to the same PDZ domain, and different PDZ domains can bind the same peptides. A detailed understanding of the PDZ-peptide recognition is needed to elucidate this complexity. To this end, we have designed a family of docking protocols for PDZ domains (termed PDZ-DocScheme) that is based on simulated annealing molecular dynamics and rotamer optimization, and is applicable to the docking of long peptides (20-40 rotatable bonds) to both known PDZ structures and to the more complicated problem of homology models of these domains. The resulting protocol reproduces the structures of PDZ complexes with peptides 4-8 amino acids long within 1-2 A from the experimental structure when the docking is performed to the original structure. If the structure of the target PDZ domain is an apo structure or a homology model, the docking protocol yields structures within 3 A in 9 out of 12 test cases. The automated docking procedure PDZ-DocScheme can serve in the generation of a structural context for validation of PDZ domain specificity from mutagenesis and ligand binding data.


J Mol Biol. 2009 Nov 13;393(5):1118-28. Epub 2009 Sep 3.


All-atom Monte Carlo approach to protein-peptide binding.

Staneva I, Wallin S.

Computational Biology and Biological Physics, Department of Theoretical Physics, Lund University, Sölvegatan 14 A, SE-223 62 Lund, Sweden.

We develop a procedure for exploring the free energy landscape of protein-peptide binding at atomic detail and apply it to PDZ domain-peptide interactions. The procedure involves soft constraints on receptor proteins providing limited chain flexibility, including backbone motions. Peptide chains are left fully flexible and kept in spatial proximity of the protein through periodic boundary conditions. By extensive Monte Carlo simulations, full representative conformational ensembles at temperatures where bound and unbound states coexist are obtained. To make this approach computationally feasible, we develop an effective all-atom energy function centering on hydrophobicity, hydrogen bonding, and electrostatic interactions. Our initial focus is a set of 11 PDZ domain-peptide pairs with experimentally determined complex structures. Minimum-energy conformations are found to be highly similar to the respective native structures in eight of the cases (all-atom peptide RMSDs <6 A). Having achieved that, we turn to a more complete characterization of the bound peptide state through a clustering scheme applied on the full ensembles of peptide structures. We find a significant diversity among bound peptide conformations for several PDZ domains, in particular involving the N terminal side of the peptide chains. Our computational model is then tested further on a set of nine PDZ domain-peptide pairs where the peptides are not originally present in the experimentally determined structures. We find a similar success rate in terms of the nativeness of minimum-energy conformations. Finally, we investigate the ability of our approach to capture variations in binding affinities for different peptide sequences. This is done in particular for a set of related sequences binding to the third PDZ domain of PSD-95 with encouraging results.



Proteins. 2009 Dec;77(4):796-811.

Identification of specificity and promiscuity of PDZ domain interactions through their dynamic behavior.

Gerek ZN, Keskin O, Ozkan SB.

Center for Biological Physics, Arizona State University, Tempe, Arizona, USA.

PDZ domains (PDZs), the most common interaction domain proteins, play critical roles in many cellular processes. PDZs perform their job by binding specific protein partners. However, they are very promiscuous, binding to more than one protein, yet selective at the same time. We examined the binding related dynamics of various PDZs to have insight about their specificity and promiscuity. We used full atomic normal mode analysis and a modified coarse-grained elastic network model to compute the binding related dynamics. In the latter model, we introduced specificity for each single parameter constant and included the solvation effect implicitly. The modified model, referred to as specific-Gaussian Network Model (s-GNM), highlights some interesting differences in the conformational changes of PDZs upon binding to Class I or Class II type peptides. By clustering the residue fluctuation profiles of PDZs, we have shown: (i) binding selectivities can be discriminated from their dynamics, and (ii) the dynamics of different structural regions play critical roles for Class I and Class II specificity. s-GNM is further tested on a dual-specific PDZ which showed only Class I specificity when a point mutation exists on the betaA-betaB loop. We observe that the binding dynamics change consistently in the mutated and wild type structures. In addition, we found that the binding induced fluctuation profiles can be used to discriminate the binding selectivity of homolog structures. These results indicate that s-GNM can be a powerful method to study the changes in binding selectivities for mutant or homolog PDZs. 2009 Wiley-Liss, Inc.




Document Actions